Brief information about the project

Name of the project	AP19677705 «The utilization of coal restudies with
	microalgae biomass for co-firing to yield an
	environmentally and economically attractive bio-fossil
	fuel» (0123PK00493)
Relevance	Coal utilization poses numerous serious environmental
	challenges, including land subsidence, damage to the
	aquatic environment, mining waste disposal, and air
	pollution. Introducing appropriate technology and
	adopting proper management practices are crucial to
	reduce the levels of coal waste discharged into the
	environment. Therefore, the use of algal biomass as a
	partial substitute for coal appears very promising from
	both an environmental and economic perspective.
	Microalgae, as a source of biomass, can be easily
	employed to treat coal residues before combustion to
	increase energy efficiency and reduce environmental
	impacts.
Purpose	To develop an environmentally and economically
	sustainable bio-fossil fuel of the new generation, co-firing
	by combining coal restudies and microalgae biomass.
Objectives	• To collect and characterize the coal residues based on
	their chemical composition and morphological structure
	using proximate- and ultimate, spectroscopic analyses and
	microscopic observations.
	• To isolate, identify and characterize the microalgae
	Oscillatoria sp. from different water reservoirs in terms of
	microbiological, functional, and chemical properties.
	• To determine optimal microalgae growth conditions and
	promote its mass cultivation, harvesting, and processing.
	• To investigate the potential of using microalgae as a
	binder for binding/pelleting.
	• To prepare various coal-microalgae blends by combining
	microalgae biomass with fine-powdered coal residues.
	• To understand the details of coal and microalgae
	interaction and synergistic effects.
	• To design and operate a binding/pelleting process of
	coal-microalgae blends.
	• To produce 'bio-fossil fuel' in the form of agglomerated
	coal-microalgae pellets.
	• To study the co-firing behavior and parameters of coal-
	microalgae pellets.
	•To characterize the pellets by means of
	thermogravimetric analyses.
	• To characterize the pellets using compressive strength
	and water resistibility.
	• To investigate the effect of co-firing coal with
	microalgae on the emissions of SO_x and NO_x .
	• To gain knowledge on co-firing coal with microalgae
	through the experimental characterization of GHG

	 To investigate the effect of microalgae's various proportions (as a partial substitution) on pellet durability-related properties, energy density, and combustion characteristics. To foster scaling up the production of coal-microalgae fuel briquettes.
Expected and achieved results	The research project will result in the development of a reliable bio-fossil fuel displaying safe and strong energy characteristics.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Akimbekov S. Nuraly - Ph.D., professor: <i>h</i>-index – 10. Scopus: 45160897400, Web of Science: A-5130–2014; ORCID: 0000-0002-5262-5155. Tastambek T. Kuanysh, PhD: <i>h</i>-index – 6. Scopus: 57200176041, Web of Science: AAO-3781–2020; ORCID: 0000-0002-2338-8816. Sherelkhan Dinara Kumiskhanovna, Master of Technical Sciences, <i>h</i>-index – 4, ID in Scopus: 57217359617, ID in Web of Science: AGF-5716-2022; ORCID ID: 0000-0001-7623-7205. Altynbai Nazim Pernebaikyzy, Master of Natural Sciences, doctoral student, <i>h</i>-index – 1, ID in Scopus: 57384147300, ID in Web of Science: AAE-7318-2022; ORCID ID: 0000-0002-7067-2457 Kamenov Bekzat Kelbetuly, Bachelor of Engineering and Technology, Web of Science: HDN-8563-2022, ORCID: 0000-0002-1484-9000.
List of publications with links to them	
Patents	-

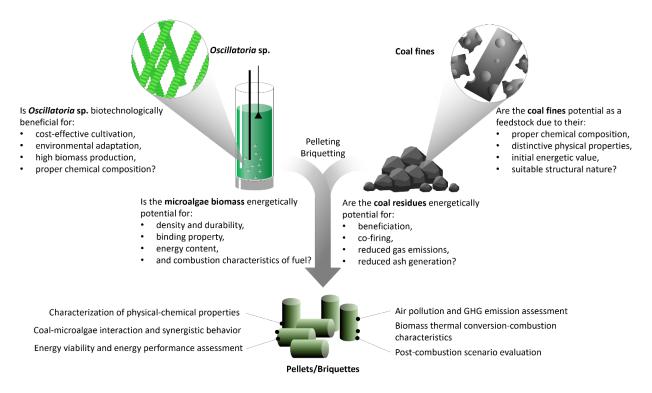


Figure 1. Designing a research hypothesis supported by research questions. The research questions, in turn, are addressed by various methods, which are discovery-oriented, descriptive, and exploratory in nature.